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.4frsiract —High-speed divider circuits find numerous applications in

prescalers for counters, frequency synthesizers, and digital phase locked

loops. To accommodate these applications, a high-speed multimode divider

circuit has been designed, fabricated, and tested. This circuit, fabricated ou

semi-insnlating Gallium Arsenide substrates, and utilizing Schottky diode

FET logic (SDFL) technology, has been tested at a maximum clock

frequeucy of 1.S4 GHz. High yields of circuits operating over 1 GHz have

been obtained over a number of wafers.

I. INTRODUCTION

T HE FIELD OF high-speed GaAs digital integrated

circuits is expanding very rapidly [1]. With speeds well

into the gigahertz domain [2], and processing capabilities

reaching large-scale integration [3], the technology is be-

coming very attractive, and applications are being sought.

Communications is a field where relatively simple high-

speed components can impact the performance of full

systems. Multimodule high-speed frequency divider cir-

cuits, for example, can find numerous applications in pres-

calers for counters, frequency synthesizers, and digital phase

lock loops. To satisfy such applications, a variable module

divider capable of eight different operating modes (divide-

by-5, -6, -10, -12, -40, -41, -80, and -82) has been designed,

fabricated, and tested.

The approach chosen was to use a well-established planar

fabrication process, and a well-demonstrated design con-

cept, so that high yields could be obtained. This paper

contains a description of the circuit starting from its build-

ing blocks. This is followed by a description of the tests

performed on wafer and on packaged devices, including

automatic high-speed measurements for yield data acquisi-

tion. Finally, the yield of high-speed circuits is discussed.

II. CIRCUIT TECHNOLOGY

The fabrication process chosen for the variable modulo

divider is the same process which was used for the first

demonstration of a large-scale GRAS integrated circuit [3].

This fabrication process has been discussed in detail

elsewhere [4]. It is a planar process which features multiple

localized ion implantations directly into semi-insulating

GaAs substrates. The unimplanted areas provide electrical

isolation between circuit elements. The process is relatively
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Fig. 1. Building blocks for the variable modulo divider circuit. (a)

Schematic of a SDFL NOR gate. (b) Logic diagram of a D-type flip-flop
with a maximum toggle rate of 1/5T~.

simple, requiring only six masks for fabrication. Various

sizes of depletion-mode MESFET.’S with 1-pm gate lengths,

along with switching and level shifting diodes are used.

The approach used to realize this circuit was Schottky

diode FET logic (SDFL) [5]. Fig. l(a) depicts a standard

SDFL NOR gate. The switching diodes are connected to-

gether to perform the OR function. The level-shifting diode

and the small pull-down transistor provide the proper bias

to switching transistor Q1. This transistor performs the

inversion function. The pull-up transistor sources current

to subsequent NOR gates when Q1 is turned off [6].

Fig. l(b) shows how the NOR gates are connected to form

a ~-type flip-flop, which is the basic building block of the

divider circuit [2]. This particular configuration of flip-flop

will operate at a maximum frequency of 1/5 ~d where ~d is

the propagation delay through a single NOR gate. This

delay is on the order of 100-ps per gate for our technology

employing 1-pm long FET gates.

There are other configurations of tip-flops [7], which

have theoretical maximum operating frequencies of 1/2 T~

where ~: is the propagation delay through an OR/NAND

gate, and thus can operate faster than the configuration

used [8]. However, this faster configuration requires com-

plementary clock inputs, which must be provided by a

complementary clock generator. This must be placed on

the chip for most practical circuit applications. The faster
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Fig. 2. Schematic of themultimtie SDFLditider circuit capable of frequency &tisionby 5,6, 10, 12,
40,41, 80, and 82. 80/82 isnegative edge triggered input. 40/41 ispositive edge triggered input.

Fig. 3. Phototicrograph of themultimode SDFLditider circuit. ~ecfipstieis 1.35 X0.9 mm.

flip-flop would also require multilevel logic. This is not a

serious obstacle because multilevel logic can be imple-

mented with SDFL [9] or other circuit approaches [7], but

some penalty, in terms of complexity and propagation

delay per gate is involved ( ~~> ~d). Therefore, the simpler

D-type flip-flop was chosen for this circuit, with the

understanding that overall circuit speed was being traded

for design simplicity and ultimately circuit yield. Divider

circuits utilizing the 1/2 Td flip-flops are now under inves-

tigation at our laboratory.

III. CIRCUIT DESIGN AND OPERATION

Fig. 2 shows a schematic of the entire variable modulo

divider circuit. Flip-flops 1 through 3 operate as a syn-

chrorlous counter and will perform either the divide-by-5

or the divide-by-6 function as controlled by the mode-select

inputs. With either mode-select line high, the divide-by-5

mode is selected. With both select lines low, the divide-by-6

mode is selected. When the input is applied through the

prescaler circuit, the input frequency is divided by 2, and

the output frequency of flip-flop 3 will be f/10 or ~/12

(where ~ is the input frequency). Exclusive ‘oR circ”~try

allows the polarity of the output signal to be selected, and

a buffer is provided to drive external circuitry. Flip-flops 4

through 6 operate as a ripple type divide-by-8, and control

the operation of the divide-by-5, -6 circuitry along with the

mode-select lines. With this control, the divide-by-40 func-

tion is realized by eight cycles of the divide-by-5 function,

and the divide-by-41 function is realized with 7‘ cycles of

the divide-by-5 and 1 cycle of the divide-by-6 function.

The divide-by-80 and -82 functions are realized in the same

manner with the use of the prescaler. The clear line control-

ling flip-flops 4 through 6 must be activated when operat-

ing in the divide-by-5, -6, -10, or -12 modes to override the
control of the first three stages.

Fig. 3 depicts a photomicrograph of an actual circuit.

The large horizontal devices between the bonding pads

around the periphery of the circuit are 360-pm wide inter-

digitated FET’s connected as source followers to drive the

signals off chip. The smaller vertical devices between the
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Fig. 4. Oscillogram of circuit outputs of SDFL divider. wafer probe.
Upper trace: divide-by-80 output. Lower trace: divide-by- 10 output.
~.=1.015 G&.

Fig. 5. Left: Probe card modified for high-speed testing. Right: Test jig for packaged device evaluation.

bonding pads in the upper left are on-chip 50-Q resistors to

terminate the clock input signal at either the prescaler

input, or the direct input to the divide-by-5, -6 stage.

The variable modulo divider circuit contains 60 gates.

The overall size of the chip is 1.35 mm X 0.9 mm.

IV. CIRCUIT PERFORMANCE

l?ig. 4 is an oscillogram of the circuit output in the

divide-by-80 mode (top trace), and the divide-by- 10 mode

(lower trace). This oscillogram was taken at wafer probe

with an input clock frequency of 1.015 GHz. The probe

card used to perform the measurements is shown at the left

side of Fig. 5. It is a standard probe card, which has been

modified for high-frequency performance. Miniature 50-0

coaxial cables are connected directly to the probe card, as

close as possible to the actual probes. The traces on the

printed circuit board are cut wherever a 50-Q cable is

connected. Bypass capacitors are soldered directly on the

probe card for all of the power supply lines.

High-frequency performance can be obtained from this

modified probe card because of the nature of the cmcuit,

and the clock signal that is introduced to the ,,circuit

through the probe card. This input clock signal is sinusoidal
because of the difficulty involved in generating puls~, trains

of sufficient amplitude at frequencies above 1 GHz. There-

fore, at any given frequency, the distortion arising from

termination mismatch will affect only the amplitude and

phase of the input signal (i.e., there is no ringing). Since ,the

input phase is not important to the divider circuit, the only

remaining concern is to ensure that there is sufficient

amplitude at the input. This can be easily accommodated,

if a signal generator with sufficient power output is used.

The output signals all have fundamental frequencies

more than two octaves lower than the input signal. This

makes them far less prone to the effects of mismatched

impedances. The o~put signals shown in Fig. 4 do exhibit



WALTON et a[. : G6As SDFL DIV1D13R CIRCUIT 1023

Fig. 6. Oscillogram of packaged device outputs showing the divide-by-80
and divide-by-82 outputs for an input frequency of 1.84 GHz. The

average propagation delay per gate is 109 ps. The totaf power dissipa-
tion is 94.5 mW (1.58 mW/gate).

some hint of ringing, and a discernible amount of clock

feedthrough.

Packaging the device in a 16-lead flat package allows the

samples to be evaluated in the test jig shown on the right of

Fig. 5. This jig’ has 50-S2 microstrip transmission lines on

alumina substrates leading directly to the edge of the flat

package. A clamp secures the leads of the flat package to

the substrates. This allows for easy interchangeability of the

flat packages without soldering. Chip-bypass capacitors are

provided on the underside of the substrates through wrap

around lines. Since the capacitors are closer to the device

uncler test, and the lengths of uncontrolled impedances are

shorter than those of the modified probe card, superior

high-frequency performance is to be expected with the test

jig.

Such results are shown in Fig. 6, which is an oscillogram

of the outputs of a packaged device, operating in the ~/80

andl f/82, modes. This device was operated with a clock

frequency of 1.84 GHz, which represents the best result

obtained thus far, for this circuit. This frequency corre-

sponds to an average ~d of 109 ps/gate, a very low propa-

gation delay for a circuit with fan out larger than one

employing 1-pm gate FET’s.

The power required at this frequency was 94.5 mW,

which corresponds to an average power dissipation of 1.58

mW/gate. (This does not include power consumption by

the irtterdigitated source follower FE’T’s.) Although this

power consumption is already quite low, it can be made

even lower if the device operates at a frequency below the

absolute maximum of which it is capable. This is exem-

plified by another data point from the same device, operat-

ing at 1.80 GHz, consuming 84 mW of power, or an

equivalent of 1.45%mW/gate. This represents operation at 9

percent lower power dissipation for a 2.5-percent reduction

in speed.

V. CIRCUIT YIELD

Comparing the sharp waveforms of the packaged device

shown in Fig. 6 to those of the wafer probed device in Fig.

4 clearly demonstrates the advantage of using packaged

devices for high-speed characterization. However, auto-

DISK STORAGE

COMPUTER
k q

4 COLOR
PLOTTER

Fig. 7. Test setup for automatic dc and RF circuit characterization.
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mated testing is much easier to implement with probe

cards, which can be used to assess circuit performance up

to 2.5 GHz. With 128 divider circuits to be evaluated per

wafer, the convenience of wafer probing cannot be over-

looked. Fig. 7 shows a block diagram of the test system

used for dc and RF characterization of these circuits. A

Hewlett-Packard 9800 series computer controls the dc bias
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Fig. 9. Wafer map and histogram of circuits

voltages applied to the circuit and monitors the current

supplied through a multiprogrammer. The output frequency

is measured and fed to the computer by a high-frequency

counter. The accompanying peripherals store and output

the acquired data. The following figures represent the data

acquired from the automatic test system in various formats.

All of the following data is from wafer probed devices

operating in the ~\40 and ~/41 modes.

In Fig. 8 we see the range of one supply voltage for

which the divider circuits on one wafer will operate at a

fixed frequency. These data are useful in determining the

best fixed voltage to use over a large number of circuits.

Fig. 9 presents additional information that is obtained

from wafer probing on the automatic system. On the left is

a wafer map which shows the location and maximum

operating frequency of all the working circuits on the

wafer. These data would be helpful in identifying process

anomalies, as well as for predicting yields of larger circuits.

The boxes labeled PMC represent drop-in chips with pro-

cess monitoring circuits not included in this test [10]. On

the right side on Fig. 8 is a histogram of the number of

working devices versus their maximum frequency of opera-

tion. The dotted curve above integrates the histogram. It

shows a total” of 70 of the 128 devices on this wafer

operating at or above 1 GHz. This number represents a

yield of 34.7 percent.

The high yield obtained for one wafer has been re-

peatedly obtained for a number of wafers. In Fig. 10, the

yield of devices working at or above 1 GHz on six different

waf w-s are shown. The average yield for all six wafers is

>50 percent. l’his figure is quite high, and it reinforces the

growing consensus that the digital GaAs IC technology is

indeed reaching maturity.

Several issues remain. Sensitivity of the GaAs circuits to

supply voltage variation must be further explored. Opera-

tion over wide temperature ranges must also be explored

since FET threshold voltage are sensitive to temperature
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[11]. Assuring operation of the circuits over convenient
range of supply voltages and a wide temperature range will

result in a penalty in terms of yield. Despite these draw-

backs, this young technology has margin for improve-

ments. For example, replacing the FET active loads by

saturated resistors appears as a very promising improve-

ment in terms of temperature and backdating sensitivity of

the circuits [12]. In terms of radiation hardness, recent

results indicate great tolerance of digital GaAs circuits not
only to total dose of ionizing radiation, but also to radia-

tion transients [13], [14].

VI. CONCLUSIONS

In this paper, we have described the technology used to

develop a high-speed SDFL divider circuit with multimode

frequency division capabilities. This flexibility lends the

circuit to various L-band applications. The operation of

this circuit was discussed and performance results were

presented. The best performance of this circuit was opera-

tion with an input clock frequency of 1.84 GHz. This
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performance was achieved while consuming only 94.5 mW [14]

of power (exclusive of source follower FET power con-

sumption) with even lower power consumption (87 mw) at

slightly lower (1.797 GHz) frequencies.

A probe card, modified for high-frequency operation,

fid a high-speed test jig were described, and the relative

1025

S. I. Long, F. S. Lee, and P. Pellegrim, “Puked ionizing radiation
recovery characteristics of MSI GaAs integrated circuits,” IEEE

Electron Devices Lett., vol. EDL-2, no. 7, pp. 173-176, July 1981.

merits of each were discussed. Automatic testing of these

devices was described, and the test results were presented.

The value of the various ‘formats of output data available

from the automated test system was shown. These resuljs

showed that good yields can be attained consistently from

SDPL cficuits, using a planar process, at MSI complexity.

It was further shown that these high yields can be re-

peatedly attained over a number of wafers with an average

yield of over 50 percent. This figure is quite high, and it

reinforces the growing consensus that the digital GaAs IC

technology is reaching maturity for full-scale utilization.
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